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Table 1: Summary of models

Model name Description Strengths Weaknesses

Neural ODE Baseline model. Updates hidden states continuously. The model’s trajectory cannot be 

adjusted based on observations.

Neural CDE Use a natural cubic spline to make the trajectory of the 

hidden state smoother and use a CDE to allow 

uncertainty.

Can integrate the afferent data without 

interrupting the ODE and adjoint 

backpropagation.

A slower computational speed; too 

many parameters need to be 

considered.

ODE2VAE Let the VAE be an encoder, dividing the image as position 

and velocity from the input use neural ODE to calculate 

the dynamics over time.

Suitable for high-dimensional data, 

especially sequence data.

Unable to handle uncertainty; can’t 

adapt the dynamics to random 

observed time points.

Latent ODE An optimized version of ODE2VAE, which directly uses 

the VAE framework. 

Able to naturally manage arbitrary time 

intervals.

A slower computational speed; too 

many parameters need to be 

considered.

Neural Jump SDE Add jumps into the neural ODE model. Can be used to model various point 

processes

Not a real SDE, can’t include random 

trajectories.

SSM-SDE Use SDE as part of the model because of the nature of 

the data.

Can improve the prediction of pure 

statistical or mechanical methods.

Does not model the stochasticity 

directly.

Adjoint SDE Augmented from latent ODE and uses SDE as part of a 

VAE.

Time-efficient and constant-memory 

computation of gradients.

Poor scalability in memory and time.

1. Neural Jump SDE: An extension of the neural ODE framework to include 

discontinuities for models of hybrid systems to model the effects of sudden 

events.

2. SSM-SDE (State-space model): A mixed model of statistical and 

physiological which combined SDE and state-space model for insulin-glucose 

dynamics to produce long-term predictions.

3. Adjoint SDE: Calculating the gradient of the solution of ODEs as SDEs, also 

allows us to use solvers that are high-order adaptive to perform time-efficient 

constant memory costs in calculating the gradient.

INTRODUCTION ORDINARY DIFFERENTIAL EQUATION-BASED MODELS

1. Neural ODE: To make neural networks continuously update hidden states, 

Chen et al. (2018) suggest creating a type of neural network called neural 

ODE (ordinary differential equation). However, the trajectory of an ODE is 

only related to its initial condition and equation, which means that the model’s 

trajectory cannot be adjusted based on observations.

2. Neural CDE (Controlled differential equation): As a result of incorporating 

observational information into the model, neural CDE is able to adjust the 

trajectory of the model as a result of observed data being fed into the model.

3. ODE2VAE: Combines the VAE (variational autoencoder) model with the 

neural ODE, allowing the dynamic delay of the decomposed ODE to be 

modeled as location and timing. 

4. Latent ODE: Defines an evolution process based on the deterministic 

evolution of the initial latent state in time, on which time series are generated. 
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CONCLUSION

From the literature, it appears to be worthwhile to 

use the latent ODE, especially when the dataset is 

not too large, from the standpoint that the latent 

ODE solves the problem from a mathematical 

perspective, even if it is computationally complex 

requires determining optimal hyperparameters. 

Alternately, natural cubic spline algorithms can be 

utilized to smooth the trajectory of the hidden 

states in a neural CDE model.

STOCHASTIC DIFFERENTIAL EQUATION-BASED MODELS

Figure 1: An example of time-series EHR data 

(Rubanova et al., 2019) 

Figure 2:How ODE-based models related 

to the neural ODE model and also how 

they are related to each other
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