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Implementability Evaluation Factors

CovRNN'Is a deep learning model to predict COVID-19 patients’ outcomes o _ _
on admission, including inhospital mortality (iMort), mechanical ventilation ©] Performance: How far predictions deviate from actual observation

(mVent), and prolonged length of stay (pLOS) on a testing dataset

CovRNN was trained on Cerner Real world data Covid-19 cohort v.20Q3,

usina our established pvtorch EHR framework Transparency: How a given technology reached a certain decision
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Explainability

Module i Generalizability : The ability of the model to digest new data and
" make accurate predictions regardless of the setting or the population

Embedding
Cohorts Med-BERT _ _
Definition 1 Multi-metric == Data Mechanics: How data can flow between systems and
LR/MLE performance == computational infrastructures
‘ Core Model 4{ Evaluation pu uctu
Multi-Level RNN Module
Evaluation plan 1—1—1 Efficiency: The amount of time and computational resources
‘ Survival Prediction Binary Prediction required by the model to work properly
5 . . - Subgroup
o y: log hazard function y: Probability _
Predlcat.lonl Task Loss: CoxPHLoss (Partial_LL) Loss: BCE Analysis
Description Model selection metric: C index | | Model selection metric: AUROC Module a

Data Privacy: models should not require any PHI data

Figure 1. pytorch  EHR Framework

Results
Performance Generalizability
Table 1. Multi-metric Performance Evaluation Results Table 2. AUROC across multiple external validation test sets.
Specificity Evaluation Dataset
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Figure 2. Calibration Curves Figure 3. Subgroup Analysis

Discussion & Conclusion

1. We followed the TRIPOD standards to report our methods and results. 2. We reported the results of three - We considered the implementability factors
ablation experiments to highlight the factors behind our model’s good performance 3. We used the Integrated  while developing and evaluating the
Gradient method to explain the individual predictions. The results and sample visualization are accessible technical performance of CovRNN.
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